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Why care about 
alternative programming 

paradigms?



Multi-cores are Here to Stay
• The number of CPU cores will only increase 

• Concurrency cannot be an afterthought 

• Software needs to adapt to available hardware 

• Programming concurrent systems should be easy 

• Low-level abstractions error-prone and slow 

• Common idioms break in concurrent settings



Beyond Concurrency
• Microservices challenge monolithic software design 

• Modular and distributed by design 

• Orchestration of loosely coupled services 

• Cloud deployments demand flexibility 

• Re-deployment and automated vertical scaling 

• Partial failures of the system common



What we Need
• No race conditions by design (without locks!) 

• Concurrency & distribution at high abstraction level 

• Compose large systems from small components 

• Scale without code changes from IoT up to HPC

Microcontrollers Servers Supercomputers

Why we need Actors



What is the actor 
model?



Actor Model in a Nutshell

• Distributed by design, perfect fit for microservices 

• Asynchronous message passing 

• Shared nothing architecture 

• Hierarchical error handling 

• Divide & conquer work flows

actor
A

actor
B

actor
C

FIFO mailbox



The World is a Stage

• "Actor model" refers to a theater metaphor 

• Each individual acts according to a script 

• Actors are agents with intents and behaviors 

• An application is a choreography of many



Programming Actors
• Actors operate event-based (message → event) 

• In response to messages, actors can: 

• Send messages 

• Spawn more actors 

• Change their behavior  
(set of message handlers)
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Control Flow of Actors
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Error Handling

• Errors have no side effects between actors 

• Explicit handling of remote errors via messages 

• Monitoring: unidirectional observing of actors 

• Linking: strong lifetime coupling of actors



Linking Actors
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How can I program 
with actors in C++?



C++ Actor Framework
• Lightweight & fast actor model implementation 

• In active development since 2011 

• Provides building blocks for infrastructure software 

• ~80,000 lines of code (https://www.openhub.net/p/actor-framework) 

• International users from MMO gaming to finance

https://www.openhub.net/p/actor-framework


Architecture
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void caf_main(actor_system& system) { 
  // create a 'mirror' 
  auto mirror_actor = system.spawn(mirror); 
  // create a 'hello_world' actor 
  system.spawn(hello_world, mirror_actor); 
  // system will wait until both actors are destroyed 
} 

CAF_MAIN()

Starts a new actor

Our First Example
Replaces the 

traditional main()
Hosts all of 
our actors



Mirror, mirror, on the Wall
behavior mirror(event_based_actor* self) { 
  // return the (initial) actor behavior 
  return { 
    // a handler for messages containing a single string 
    // that replies with a string 
    [=](const string& what) -> string { 
      // prints "Hello World!" via aout 
      aout(self) << what << endl; 
      // reply "!dlroW olleH" 
      return string(what.rbegin(), what.rend()); 
    } 
  }; 
}



Hello World!
void hello_world(event_based_actor* self, actor buddy) { 
  // send "Hello World!" to our buddy ... 
  self->request(buddy, std::chrono::seconds(10), 
                "Hello World!") 
  .then( 
    // ... wait up to 10s for a response ... 
    [=](const string& what) { 
      // ... and print it 
      aout(self) << what << endl; 
    } 
  ); 
}



Ok, but what about 
streams?



Streams

• Conceptually: potentially infinite lists 

• Usually never fully present in memory at any time 

• Allow chunked processing of huge data volumes 

• Enable realtime event handling (e.g. Twitter feeds)



Just Send Messages!?
• Actors have unbounded mailboxes 

• No feedback to sender regarding mailbox load 

• Fast senders eventually overwhelm receivers 

• Overhead per message too high for little data 

• Wrapping each item of a stream wastes memory 

• Batch processing much faster than one-by-one



Streams in CAF

• Stream topologies can span any number of actors 

• Demand signaling slows down senders if needed 

• Load-balancing and broadcasting* via stages 

• Stream priorities* allow fine-grained flow control

* only partially implemented as of CAF 0.16



Streaming Concept

source stage sink

data flows downstream

demand flows upstream

errors are propagated both ways



Per-Stream State
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Implementing a Source
behavior int_source(event_based_actor* self) { // Makes ints [0, n) 
  return { 
    [=](open_atom, int n) { 
      return self->make_source( 
        [](int& x) { // Initializer 
          x = 0; 
        }, 
        [n](int& x, downstream<int>& out, size_t hint) { // Generator 
          auto max_x = std::min(x + static_cast<int>(hint), n); 
          for (; x < max_x; ++x) 
            out.push(x); 
        }, 
        [n](const int& x) { // End predicate 
          return x == n; 
        }); 
    } 
  }; 
}
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Implementing a Stage
behavior int_selector(event_based_actor* self) { // Drops odd numbers 
  return { 
    [=](stream<int> in) { 
      return self->make_stage( 
        in, // Our input source 
        [](unit_t&) { // Initializer (uses unit_t for "no state") 
          // nop 
        }, 
        [](unit_t&, downstream<int>& out, int val) { // Processor 
          if (val % 2 == 0) 
            out.push(val); 
        }, 
        [=](unit_t&, const error& err) { // Finalizer 
          // Check for error ... 
        }); 
    } 
  }; 
}



Implementing a Sink
behavior int_sink(event_based_actor* self) { 
  return { 
    [=](stream<int> in) { 
     return self->make_sink( 
        in, // Our input source 
        [](std::vector<int>&) { // Initializer 
          // nop 
        }, 
        [](std::vector<int>& xs, int val) { // Consumer 
          xs.emplace_back(val); 
        }, 
        [=](std::vector<int>& xs, const error& err) { // Finalizer 
          // Check for error, do something with xs ... 
        }); 
    } 
  }; 
}



Putting it Together

void caf_main(actor_system& sys, const config& cfg) { 
  auto src = sys.spawn(int_source); 
  auto stg = sys.spawn(int_selector); 
  auto snk = sys.spawn(int_sink); 
  auto pipeline = snk * stg * src; 
  anon_send(pipeline, open_atom::value, cfg.n); 
}



How fast is it, tho?



Demo Time



Thanks for Listening!

actor-framework actor_framework


