
Streaming in CAF

Dominik Charousset

October 2018
C++ User Group Hamburg

Why care about
alternative programming

paradigms?

Multi-cores are Here to Stay
• The number of CPU cores will only increase

• Concurrency cannot be an afterthought

• Software needs to adapt to available hardware

• Programming concurrent systems should be easy

• Low-level abstractions error-prone and slow

• Common idioms break in concurrent settings

Beyond Concurrency
• Microservices challenge monolithic software design

• Modular and distributed by design

• Orchestration of loosely coupled services

• Cloud deployments demand flexibility

• Re-deployment and automated vertical scaling

• Partial failures of the system common

What we Need
• No race conditions by design (without locks!)

• Concurrency & distribution at high abstraction level

• Compose large systems from small components

• Scale without code changes from IoT up to HPC

Microcontrollers Servers Supercomputers

Why we need Actors

What is the actor
model?

Actor Model in a Nutshell

• Distributed by design, perfect fit for microservices

• Asynchronous message passing

• Shared nothing architecture

• Hierarchical error handling

• Divide & conquer work flows

actor
A

actor
B

actor
C

FIFO mailbox

The World is a Stage

• "Actor model" refers to a theater metaphor

• Each individual acts according to a script

• Actors are agents with intents and behaviors

• An application is a choreography of many

Programming Actors
• Actors operate event-based (message → event)

• In response to messages, actors can:

• Send messages

• Spawn more actors

• Change their behavior  
(set of message handlers)

Anatomy of an Actor
Actor

Address to an actor
(allows enqueueing of messages)

Actor

Address to an actor
(allows enqueueing of messages)

Processing
(Control Loop)

Dequeue
Message

Invoke
Behavior

done?

yes

no

Actor

Address to an actor
(allows enqueueing of messages)

Processing
(Control Loop)

Dequeue
Message

Invoke
Behavior

done?

yes

no

Storage (State)

int count;
string foo;
...

Internal Variables

[=](int x) {
 count += x;
}
...

Message Handlers (Behavior)

Actor

Address to an actor
(allows enqueueing of messages)

Processing
(Control Loop)

Dequeue
Message

Invoke
Behavior

done?

yes

no

Storage (State)

int count;
string foo;
...

Internal Variables

[=](int x) {
 count += x;
}
...

Message Handlers (Behavior)

…

Communications (via FIFO mailbox)

Control Flow of Actors

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive
next

message

case Npattern N matched M

else

else

Error Handling

• Errors have no side effects between actors

• Explicit handling of remote errors via messages

• Monitoring: unidirectional observing of actors

• Linking: strong lifetime coupling of actors

Linking Actors
alice

exit message
(non-normal exit reason)

link

bob

quit()

How can I program
with actors in C++?

C++ Actor Framework
• Lightweight & fast actor model implementation

• In active development since 2011

• Provides building blocks for infrastructure software

• ~80,000 lines of code (https://www.openhub.net/p/actor-framework)

• International users from MMO gaming to finance

https://www.openhub.net/p/actor-framework

Architecture

Actor
Message
Actor

NodeNode
Process

Message
Actor

NodeNode
Process

GPU

GPGPUMessage
Actor

NodeNode
Process

GPU

GPGPU

Actor SystemActor System

Distribution Layer

Message
Actor

NodeNode
Process

GPU

GPGPU

Actor SystemActor System

Distribution Layer Socket API Thread API

Network
Middleman

Cooperative
Scheduler

OpenCL

GPGPU
Wrapper

Network
CPU

Message
Actor

void caf_main(actor_system& system) {
 // create a 'mirror'
 auto mirror_actor = system.spawn(mirror);
 // create a 'hello_world' actor
 system.spawn(hello_world, mirror_actor);
 // system will wait until both actors are destroyed
}

CAF_MAIN()

Starts a new actor

Our First Example
Replaces the

traditional main()
Hosts all of
our actors

Mirror, mirror, on the Wall
behavior mirror(event_based_actor* self) {
 // return the (initial) actor behavior
 return {
 // a handler for messages containing a single string
 // that replies with a string
 [=](const string& what) -> string {
 // prints "Hello World!" via aout
 aout(self) << what << endl;
 // reply "!dlroW olleH"
 return string(what.rbegin(), what.rend());
 }
 };
}

Hello World!
void hello_world(event_based_actor* self, actor buddy) {
 // send "Hello World!" to our buddy ...
 self->request(buddy, std::chrono::seconds(10),
 "Hello World!")
 .then(
 // ... wait up to 10s for a response ...
 [=](const string& what) {
 // ... and print it
 aout(self) << what << endl;
 }
);
}

Ok, but what about
streams?

Streams

• Conceptually: potentially infinite lists

• Usually never fully present in memory at any time

• Allow chunked processing of huge data volumes

• Enable realtime event handling (e.g. Twitter feeds)

Just Send Messages!?
• Actors have unbounded mailboxes

• No feedback to sender regarding mailbox load

• Fast senders eventually overwhelm receivers

• Overhead per message too high for little data

• Wrapping each item of a stream wastes memory

• Batch processing much faster than one-by-one

Streams in CAF

• Stream topologies can span any number of actors

• Demand signaling slows down senders if needed

• Load-balancing and broadcasting* via stages

• Stream priorities* allow fine-grained flow control

* only partially implemented as of CAF 0.16

Streaming Concept

source stage sink

data flows downstream

demand flows upstream

errors are propagated both ways

Per-Stream State

output
buffer

input
buffer

driver downstream
manager

error
handler

not in sinksnot in sources

user-provided

Implementing a Source
behavior int_source(event_based_actor* self) { // Makes ints [0, n)
 return {
 [=](open_atom, int n) {
 return self->make_source(
 [](int& x) { // Initializer
 x = 0;
 },
 [n](int& x, downstream<int>& out, size_t hint) { // Generator
 auto max_x = std::min(x + static_cast<int>(hint), n);
 for (; x < max_x; ++x)
 out.push(x);
 },
 [n](const int& x) { // End predicate
 return x == n;
 });
 }
 };
}

{Dr
ive

r
im

pl
em

en
ta

tio
n

Implementing a Stage
behavior int_selector(event_based_actor* self) { // Drops odd numbers
 return {
 [=](stream<int> in) {
 return self->make_stage(
 in, // Our input source
 [](unit_t&) { // Initializer (uses unit_t for "no state")
 // nop
 },
 [](unit_t&, downstream<int>& out, int val) { // Processor
 if (val % 2 == 0)
 out.push(val);
 },
 [=](unit_t&, const error& err) { // Finalizer
 // Check for error ...
 });
 }
 };
}

Implementing a Sink
behavior int_sink(event_based_actor* self) {
 return {
 [=](stream<int> in) {
 return self->make_sink(
 in, // Our input source
 [](std::vector<int>&) { // Initializer
 // nop
 },
 [](std::vector<int>& xs, int val) { // Consumer
 xs.emplace_back(val);
 },
 [=](std::vector<int>& xs, const error& err) { // Finalizer
 // Check for error, do something with xs ...
 });
 }
 };
}

Putting it Together

void caf_main(actor_system& sys, const config& cfg) {
 auto src = sys.spawn(int_source);
 auto stg = sys.spawn(int_selector);
 auto snk = sys.spawn(int_sink);
 auto pipeline = snk * stg * src;
 anon_send(pipeline, open_atom::value, cfg.n);
}

How fast is it, tho?

Demo Time

Thanks for Listening!

actor-framework actor_framework

